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Summary: The isomerization of siloqcyclopropanes to enol silyl ethers and ally1 silyl ethers was 
accomplished by using [Rh(C0)$21]2 as a catalyst. Regiochemistry with respect to the newly formed double 
bond of the product was highly dependent on the substitution pattern of cyclopropane ring. 

In our continuous studies concerning siloxycyclopropane 1,’ we have revealed that two major reaction 

courses are available for metal-induced cleavages of 1: (i) formation of g-metal10 ketone 32 and (ii) 

isomerization to allylic ether 4.3 Both processes are accounted for by assuming the electrophilic ring opening 

of 1 by metal ion to give an ionic intermediate 2, followed by desilylation and 1,2-hydrogen shift, respectively. 

Although the transition-metal promoted ring opening of strained cyclopropanes has become of considerable 

interest in recent years,4 examples of the reaction have been confined to cyclopropanes without electron 

donating substituents. Particularly intrigued by the possibility of the ring opening of siloxycyclopropane 1 

with transition-metal complexes, we have examined the reaction of 1 with rhodium complexes.5 Herein we 

report the Rh(l)-catalyzed isomerization of 1 to ally1 silyl ether 4 and enol silyl ether 5. 
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Table I. Rh(I)-Catalyzed Isomerization of Siloxycyclopropanes 1’ 

entry substrate temp(“C), time(h) product (E/Z, ~ield(%))~ 
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t-BuMe,Si 
70, 6 

Ph 
lb 

62, 27 

90, 27 

90, 27 

If” 

t-BuMe,SiO 

I?? 
lg 

t-BuMe,Siq 1 

90, 72 

(52/48, 90) 

(80/20, 70) 

(70/30, 63) 

(58/42, 71) 

4f (3) 5f (65135, 55) 

t-BuMe2SI0 

&(‘::;&(:;&(7) 

t-BuMezSIO t-BuMe,SIO 

67g(l) o,,,,, 

t-BuMe,SlO t-BuMe,SIO 

“’ 4o &(6,, &h(-) 

100, 42 

li 

t-BuMe,SIO I . t-BuMe$I? 

c4i (21) ai(27) 

a) Conducted in sealed tubes with 5mol% of [Rh(CO),C&. b) Determined by GC and/or ‘H NMR. 
c) CHCl, reflux. d) E/2=64/36. e) E/Z=64/36. f) Starting material li was recovered (38%). 
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group.10 P-Hydrogen abstraction from 9 gives rc-ally1 rhodium hydride 10. Reductive elimination from 10 at 

C1 and Cf carbons produces x-complexes 12 and 11, respectively. The selectivity of 5 and 4 would be 

concerned with the relative kinetic stability of these n-complexes, 11 although we have not probed for direct 

evidence on this point. 

Scheme I 
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